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For the case of weak perturbations, our theory is shown to reproduce exactly the results of Simiu and
Frey [Phys. Rev. E 48, 3185 (1993)]. In the presence of weak noise, the two approaches yield different re-
sults. This can be traced to the neglect of diffusion effects in the Simiu-Frey theory; the inclusion of
these effects, via an ensemble-averaged redefinition of the Melnikov function, leads to an additional term

involving the noise variance.

PACS number(s): 05.45.+b

The authors Simiu and Frey (hereafter referred to as
SF) of the preceding comment [1] have one basic objec-
tion to our work: our redefined “generalized Melnikov
function,” introduced in our first paper (hereafter re-
ferred to as BSJ) [2], is inconsistent with the original
mathematical definition—it is not ‘‘geometrically
correct.” We have admitted, from the outset, that by
raising the issue of ‘““homoclinic tangency in the mean”
there may be questions concerning the validity of our ex-
tension of the Melnikov approach, showing transverse in-
tersections and implying horseshoes, in the presence of
noise (in this case meaningful, i.e., measurable, quantities
are considered as suitably defined ensemble averages).
Nevertheless, our conjecture that one could carry over
deterministic techniques to the macroscopic quantities
that describe the position and velocity variables in the
ensemble-averaged system is one that is firmly rooted in
the stochastic repertoire. We must also point out that
the whole concept of homoclinic tangency in the presence
of noise remains undefined. We have approached the
problem from a physicist’s standpoint: writing down a
stochastic analog of the Melnikov function (through a
redefined ‘“‘unperturbed” system) and then making con-
tact with the usual definition of homoclinic tangency in
the ensemble-averaged framework. Our results reduce to
the well-known result (also the SF result) for the non-
noisy case. For the case of nonzero noise, the SF calcula-
tion sheds very little light on the fundamental issue en-
nunciated above; we discuss these points in greater detail
below.

In BSJ, we consider the system

X+ f(x)=F(t)+Qsin[o(t —ty)]—kx , (1)

where F(t) is Gaussian 8-function-correlated noise with
mean m and variance o2. We assume that (for k =0=Q)
the “weak” (this term is quantified in Sec. III of BSJ)
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noise leads to trajectories that fluctuate in position and
velocity about the deterministic separatrix. In BSJ, we
considered the m =0 case throughout, the exception be-
ing the digression leading to Eq. (40). However, we con-
tend that there should be a diffusion contribution as well.
Such a contribution can be calculated within a Fokker-
Planck framework which is what our original work was
about. In fact, let us assume that, in the presence of
noise, the Melnikov function is written as the ensemble-
averaged quantity,

Ap=Ay+A,, (2)
where

Ao=m [dt %, ()—k [ dt xX1)

+Q [ dt 3 (1) sin[w(t —1,)] 3)

is the Melnikov function written down by SF. As noted
above, this function involves a contribution due to the
mean value m of the noise (a contribution from the drift
part of the equivalent Fokker-Planck equation). The
correction term A, contains a diffusion contribution:

A =k [dit(8i%(1) . )

To obtain this correction resulting from higher-order (in
the noise) perturbations of the separatrix [recall that in
this picture, the first-order correction (8x(¢))=0] we
write down the perturbed equation

E+f(x)=4@), (5)

where we have set {(¢#)=F(¢t)—m, and carry out the ex-
pansion

x(1)=x,(¢)+6x (1), (6)
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which is to lowest order [0(\/0%)] in the noise. The
correction term A, then turns out to be O(o?), however,
it is still of the same order in the Melnikov perturbation
theory, i.e., O(k,Q,m). The net result is that Eq. (36) of
BSJ (which was originally derived for m =0) should now
be replaced by

o_|¢Q 2_m
a X 0+B0'1 kG , (7)
where
fxs(t)dt

~ [ %0 sin[o(t —t,)]dt

and B is defined in BSJ [Eq. (38)]. This equation also
takes the place of Eq. (40) of BSJ.

In the absence of noise, but with additional perturba-
tions of the form y,cosw;t (as suggested by SF), the
second and third terms on the right-hand side (rhs) of (7)
are replaced by terms similar to the third term on the rhs
of (3); our theory reproduces, for this case, the SF results
with the presence of additional periodic perturbations,
indeed lowering the homoclinic threshold. The situation
is far more complicated in the presence of noise. For
Gaussian noise, the Fokker-Planck representation of the
dynamics as a diffusion process is exact. No higher-order
terms occur in the Fokker-Planck equation, but the
effects of diffusion are not zero either. This leads, in turn,
to the second term on the rhs of (7). It is the interplay
between the second and third terms on the rhs of (7) that
determines whether the homoclinic threshold is elevated
or depressed. Note that in our original paper, we con-
sidered only the m =0 case; for this case the threshold
can only be elevated.

Before going further, it is instructive to make a few
comments about the numerical simulation of noisy non-
linear dynamic systems. SF use the Shinozuka algorithm
that represents the noise as an infinite Fourier decompo-
sition. The Shinozuka algorithm has been compared with
other algorithms in Ref. [3]. In theory, a very large num-
ber of terms must be retained in the Fourier decomposi-
tion of the noise, to approach real Gaussian statistics; the
Gaussian distribution is obtained only in the N — « lim-
it. In practice, however, about 1000 terms will usually
suffice [4] to generate the tails of the Gaussian distribu-
tion with about 5% accuracy, and guarantee ergodicity in
the averaging process. The SF simulation in which only
15 terms are retained falls far short of these requirements.
They are, in effect, simulating not noise, but the effect of
including 15 periodic perturbations with random frequen-
cies and phases. They point out (rightly, and in agree-
ment with our results as indicated above) that this
depresses the homoclinic threshold. However, they then
seem to imply that this simulation may reproduce (quali-
tatively at least) the effects of noise. This argument is
somewhat nebulous. To begin with, the whole notion of
considering homoclinic crossing in the ensemble-
averaged framework means that one should consider
thousands of realizations of the noise (corresponding to
different random number seeds) and take the ensemble
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average of all these realizations. Recent algorithms [5]
are ideally suited to carry out these simulations and have,
in fact, been used in Ref. [2] to generate Figs. 6—12. The
SF simulation (even if they employed additional terms in
their spectral representation) corresponds to only a single
realization of the noise. There is, however, a far deeper
issue. It is unclear, at this point, how one takes into ac-
count diffusion effects if one introduces into the nonlinear
dynamics (1) a Fourier representation of the noise, as em-
ployed by SF; the passage to a diffusion involving a prob-
ability density function is not clear in this case. Clearly,
this is a problem which, in its own right, merits further
consideration. On the other hand, the Fokker-Planck ap-
proach for real Gaussian noise, defined simply via its first
two moments and not via the spectral representation, is,
as mentioned earlier, exact, and results obtained via its
application have been successfully tested, for a large class
of applications, by direct simulation of the corresponding
stochastic differential equations using any of the algo-
rithms of Ref. [5]. We contend therefore that, pending
further investigation into the questions raised above (and
in BSJ), our calculation is far more general than SF. We
reiterate that our work is consistent with the original per-
turbation expansion of Melnikov; the ensemble-averaged
correction A, is of the same order of perturbation theory
as the original Melnikov function (in the absence of
noise). The factor o? enters because we have introduced
a second expansion in a different variable (the noise) in
order to calculate noise-induced perturbations to the
separatrix solution.

We would like to make a couple of comments regard-
ing the multiplicative noise case [6]. For this case, we
have considered the system

X +pB(t)f(x)=Q sin(wt)—kx , (8)

where [(t) is now Gaussian 8-function-correlated noise
having a nonzero mean. If we follow the procedure of SF,
the way to treat this problem is to solve the above equa-
tion with the rhs set equal to zero, and use this solution
in the original definition of Melnikov. To the best of our
knowledge, there exists at present no known mathemati-
cal technique for accomplishing this. Our procedure
would be the only reasonable way to treat this problem.
Clearly, for the multiplicative noise case, the homoclinic
threshold will be raised or lowered depending on the sign
of the mean value m of the noise (the effect of multiplica-
tive noise is to modulate, on average, the potential barrier
height).

In conclusion, we disagree with the SF contentions.
For them to claim that conventional Melnikov theory can
be straightforwardly applied to a nonlinear stochastic
system and then to ignore diffusion effects is contrary to
the most basic principles of nonequilibrium statistical
mechanics. By merely rewriting the function A, (which is
already contained in our theory), SF have not shed any
new light on the problem; rather, they have chosen to
present us with a calculation which is simply a nonri-
gorous extension of well-known earlier work done by
Wiggins [7] on the two-frequency-forced Duffing prob-
lem. For the reasons mentioned in the preceding para-
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graph, the somewhat limited example that they have
simulated cannot be used as a basis for claiming that
their theory is correct unless they can prove that there are
no diffusion effects; they cannot do so with their current
approach.

We would like to reiterate in closing that there do
indeed exist some very profound questions concerning the
representation of noise via its spectral decomposition and
its integration into the conventional approach based on a
diffusion equation for the probability density function of
the dependent variable, as well as the broader issue of
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homoclinic tangency in an ensemble-averaged sense. At
present, a rigorous proof of the existence of Smale
horseshoes exists only for the two-frequency-forced case
[7]. We have tried to provide a starting point for the ex-
tension of the concept of homoclinic tangency to noisy
systems by introducing the notion of homoclinic tangen-
cy in the mean. For both the additive and multiplicative
noise cases, our procedure has been to introduce a Melni-
kov function (following the original definition) for one
member of the ensemble (i.e., one realization of the noise)
and then average over the ensemble.
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